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Bloch-Wave Analysis of Stripline- and
Microstrip-Array Slow-Wave Structures

VITTORIO RIZZOLI, MEMBER, IEEE, AND ALESSANDRO LIPPARINI

Abstract—The paper discusses a general approach to the analysis of
periodic structures essentially consisting of an array of coupled striplines
or microstrips. It is shown that any such structure can be represented as a
cascade of identical multiport networks of known topology, thus allowing a
straightforward analysis in terms of Bloch waves. The method is equally
appiicable to homogeneous and nonhomogeneous dielectric (i.e., MIC)
devices.

I. INTRODUCTION

GENERAL representation of the class of microstrip

(or ‘stripline) periodic slow-wave structures to be
considered in this paper is schematically given in Fig. 1.
The basic device consists of a uniform array of micro-
strips of finite length / that are suitably terminated at both
ends of the coupled region. This is indicated in Fig. 1 by
introducing the boundary networks Q,, Q,, which are
assumed to be periodic with the same period 4 as the
microstrip array, or a multiple thereof. The technical
interest of this kind of device is well established, since a
number of electrical functions can be realized by suitably
specifying the topology of the boundary networks. This
includes tight coupling (e.g., the combline directional cou-
pler [1]-[2]), phase equalization (e.g., the meander line
[3]-[5D), and filtering (e.g., the hairpin line [3]).

However, a unified treatment of these components from
the standpoint of the classi¢ theory of periodic structures
has not been available so far. This is probably so because,
while on one hand the network of Fig. 1 is clearly peri-
odic, on the other the circuit topology of its fundamental
cell is not immediately evident. In this paper we present
and discuss a general method allowing periodic MIC
devices to be analyzed and designed by a straightforward
circuit approach. The basic mathematical tool for doing
so is represented by Bloch waves.

II. DECOMPOSITION OF A MICROSTRIP-ARRAY
DEVICE INTO A CASCADE OF IDENTICAL CELLS

In this section we illustrate the transformation of the
basic topology of Fig. 1 into a cascade of identical multi-
port networks ( fundamental cells), which is a form suitable
for Bloch-wave analysis. As shown in Fig. 1, a unit cell is
defined as a section of the microstrip array bounded by
the lengthwise centerlines of two adjacent strips. In the
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Fig, 2. Generation of a microstrip array by cascade connection of
two-wire line sections.

case that Q, and Q, are periodic with spatial period pd(p
integer), the fundamental cell of the structure will consist
of p cascaded unit cells of the array plus a section (corre-
sponding to a period) of each boundary network. How-
ever, this basic configuration does not lend itself to a
circuit analysis, since two consecutive cells are connected
to each other along the entire centerline of a strip. Thus
we must replace this distributed coupling by an equivalent
set of discrete connections. This is made possible by the
assumption of pure TEM (or quasi-TEM) propagation in
the x-direction, as discussed below.

As a preliminary step, we consider an infinite array of
identical sections of symmetric two-wire lines uncoupled
with each other (see Fig. 2). For the ith line the two
conductors are indicated as wire 1 i and 2 i, and the
amplitudes of the even- and odd-mode voltages traveling
in the positive (negative) x-direction are denoted by V;,
Vot (Vei»Vor )- Thus the voltages on wires 2i—1 and 1
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may be expressed as
Vaici(x)=Vgi_1exp(—vgx) — Voi_1€xp(—YoX)

+Vei—1exp(vpx) — Vo 1exp(Yox) (1)
Vi {(x)=Vg; exp(—vygx)+ Vo exp(—v,x)
+ Vg exp(ygx) +Vy, exp(vox) ()

where vz, v, are the even- and odd-mode propagation
constants. Now we establish short-circuit connections be-
tween the two wires considered at four different positions
defined by

xx=K3z, K=0,1,2,3 3)

as indicated in Fig. 2. This is mathematically equivalent to
making ¥, (xg)=V¥; {(xx), or, from (1) and (2)

P oK+ P; 8k +P;} 6, K+ Py 05 =0,

K=0,1,2,3 ()
where
PE+ = VE-:‘- - VET—l
Pe =Vg — Vi
Py =Vo +Voi_,
Py =Voi +Voioy (5)
and
(3%)
Sy =exp{ = vg/
3
1
8 =exp(§yol). (6)

Equation (4) is a system of linear homogeneous equations
in the unknowns (5), whose determinant is given by

[ +7o)!
A=64sinh l—g— ~sinh%l .sinh2 (ve 6YO)

-sinh? —*—(YE;YO)Z. (7)

Note that A is generally different from zero for v; #v,
(i.e., in the microstrip case). Thus the only solution of (4)
is Py =Pz =P, =P, =0. In turn, from (1), (2), and (5)
we obtain

Vaiza(x)=V1,(x) ()

for any x.

In conclusion, making the connections indicated in Fig.
2 is equivalent to merging the wires 2 i—1 and 1/ into a
unique metal conductor. In this way, a uniform microstrip
array such as shown in Fig. 1 can be generated from the
set of isolated two-wire lines of Fig. 2. Fig. 3 illustrates the
same concept in terms of capacitance models.

Conversely, given the device of Fig. 1, the microstrip
array in it can be decomposed (as shown in Figs. 2 and 3)
into a cascade of identical 8-port networks such as shown
in Fig. 2 (network N, in this figure), so that for the
original periodic structure we find the equivalent circuit of
Fig. 4. The topology of the fundamental cell is illustrated
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Fig. 3. Generation of a microstrip array from the standpoint of capaci-
tance models.
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in some more detail in Fig. 5 for the case that Q, and Q,
are periodic with the same period as the microstrip array.
Here Q] and Q5 are sections of Q; and @, bounded by
the terminal planes, while each block M represents a
symmetric two-wire line of length //3 (see Fig. 2). Such
lines are defined by the capacitance model of Fig. 3(a),
assuming that the capacitance model of the array is the
one shown in Fig. 3(b).

In practical applications, one is given the geometrical
parameters of the array (see Fig. 1), i.e., strip width (W),
spacing (S), and length (/), as well as the topology of the
boundary networks, and has to generate a circuit descrip-
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tion (e.g., the scattering matrix) of the fundamental cell.
According to the previous discussion, this can easily be
accomplished by carrying out the following steps.

1) Starting from the geometrical data, the capacitance
model of the array (Fig. 3(b)) is found by means of
well-known static methods (e.g., the variational approach
of [6]). The self and coupling capacitances are indicated
by 2C and C,, respectively, as in Fig. 3(b). The corre-
sponding air capacitances (i.e., with the substrate dielec-
tric constant set to one) are denoted by 2C’ and Cj.

2) The even- and odd-mode characteristic impedances
and phase velocities of the two-wire line M (Fig. 5) are
computed from the capacitance model of Fig. 3(a) by the
following formulas:

Zp=—1t
v, VCC’
Z,= !
oof(C+2C,)(C' +2C))
C/
0,5 =0 C

C'+2C;
o=\ r3c, ©)

where v, is the velocity of light in vacuo.

3) Making use of (9), the impedance (or admittance)
matrix of the 4-port M is determined, e.g., by the explicit
formulas reported in [7]. Then the networks Q; and Q) are
analyzed (usually Qf, Q; have very simple topologies and
can be quantitatively described by conventional methods),
and the various building blocks are combined [8] to find a
circuit description—such as the scattering or transmission
matrix—of the fundamental cell.

From the network of Fig. 4 all of the technically inter-
esting particular cases can be simply generated by specify-
ing the topologies of the boundary networks Q,, Q,. For
instance, if @, and Q, are cascades of transmission-line
tees we get the combline coupler [1] (Fig. 6(a)), while for
Q, and @, reducing to transmission-line connections on
alternate sides of the array, the microstrip meander-line is
obtained (Fig. 6(b)). Note that for the above structures Q,
and Q, are periodic with period 24 (i.e., twice that of the
array), so that the fundamental cell of the periodic device
contains two unit cells of the microstrip array. However
the previously discussed guidelines for analyzing the
fundamental cell are obviously still valid. Further circuit
transformations may be sometimes carried out [9] in order
to simplify the topology of the fundamental cell.

A final point concerns loss-free homogeneous-dielectric
(i.e., ideal stripline) devices. In this case we have vz =v,,
so that we are left with only two unknowns, namely,
P} +P4 and P; +P,, in the fundamental system (4).
Thus the wires 2 i—1 and 1 { need to be connected at only
two locations (such as x=0 and x=/, see Fig. 2) to ensure
the equality of the voltages at any value of x. As a
consequence, the network N, in the equivalent circuits of
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Fig. 6. Equivalent circuit of (a) the combline directional coupler, and
(b) the microstrip meander line.

Figs. 4—6 will only have 4 ports (instead of 8), and the
connections indicated by dashed lines in these figures will
be missing. In particular, the three blocks M appearing in
the fundamental cell (Fig. 5) will merge into a unique
two-wire line of length /. All of the subsequent calcula-
tions will then be accordingly simplified.

1II. GENERAL ANALYSIS OF A MICROSTRIP-ARRAY
PERIODIC STRUCTURE

Any practical microstrip-array periodic device will con-
sist of a cascade of identical fundamental cells terminated
by suitable end sections. The latter may be separately
analyzed and connected to the rest of the network by
standard circuit algebra (e.g., [8]) once a circuit descrip-
tion of the cascade of repetitive cells has been found. The
present section is devoted to the development of a Bloch-
wave formalism for computing the scattering matrix of
such a cascade.

According to [10], an electromagnetic field guided by
the structure will be named a Bloch wave when the field
distribution repeats identically at every terminal plane
except for a propagation factor exp (—v). For general
periodic structures, the Bloch-wave concept allows propa-
gation along the device axis to be treated separately from
the field description. The latter is thereby reduced to the
analysis of a single fundamental cell, from which the
dispersion equation for the Bloch waves supported by the
structure is directly derived [10]. A general field may then
be expressed by a superposition of Bloch waves, assuming
that these represent a complete set of modes. This is
conceptually similar to the usual treatment of uniform
waveguides, where the mode concept allows the field
analysis to be restricted to the waveguide cross section.
For the present case, a circuit description of the funda-
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Fig. 7. Definition of forward- and backward-traveling wave ampli-
tudes at the ports of the nth cell.

mental cell is available from the general discussion of
Section IL. In order to simplify the subsequent calcula-
tions, the incident and reflected wave amplitudes at the
nth terminal plane, namely A4,, B,, are used to describe
the electrical behavior of the structure. These are related
to voltages and currents by the usual relationships

1 1
it evs)

R,

B,,%( !
VRO

V,— VR, I,,) (10)

(R, =reference impedance). Thus the equations of the
fundamental cell take the form

)
Bn—- 1 Bn
where T is the wave transmission matrix (see Fig. 7).
Equation (11) can be viewed as a difference equation in
the unknowns A4,, B,, which for the present. purposes
replaces Maxwell’s equations. Thus we can expect to be
able to derive from (11) a dispersion equation for the
Bloch waves supported by the structure. Obviously, since
(11) is only valid under the assumption of quasi-TEM
propagation in the x-direction, only Bloch waves undergo-
ing this limitation will be obtained, in much the same way
as only the quasi-TEM modes of an array of uniform
coupled microstrips can be found starting from the classic
coupled-line equations. These waves, however, can be
expected to be the only significant ones for MIC applica-
tions.

Now let us denote by W, a complete set of Bloch waves
at the nth terminal plane. By definition of completeness,
any electromagnetic field supported by the structure at the
same plane—here described by the set of scalar quantities
A,, B,—can be expressed as a linear combination of the
elements of W,, that is

A =MW,
B - n

n

(11)

(12)

where M is a square nonsingular matrix independent of n.

Both the row size of M and W, equals the number of ports
of the fundamental cell, which is denoted by 2m (see Fig.
7). From (11) we get

(13)
with

A=M"'TM. (14)
By definition, the elements of W, are Bloch waves if A is a
diagonal matrix. In this case (14) shows that the elements
of A are the eigenvalues of T, while M is a matrix whose
columns are linearly independent eigenvectors of T. If the
ith nonzero element of A is expressed as

N =exp(y) i=1,2,--,2m (15)

¥; has the physical meaning of normalized propagation
constant of the ith wave. According to the definition of
eigenvalues, (15) satisfy

det{T—exp(y)I}=0 (16)

where y stands for any of the y,’s and I is the identity
matrix of order 2m. Equation (16) is the dispersion equa-
tion for the Bloch waves being considered.

In the commonly encountered case of a reciprocal de-

vice, we have
A, 0
A=
0 Ap!

so that only m independent Bloch waves (traveling in the
positive and negative z-direction) are found. Thus if the
eigenvector matrix is divided into square submatrices in
the form

(17)

M, M
M= "1 "2 1
e 9
the general solution to (11) has the expression
A, =M AW, + M, NiW,
B, =M, AW, + M, AWy (19)

where W,;, W are vectors of incident and reflected Bloch
waves at the input (n=0) plane.

Next we consider the cascade connection of any num-
ber N of fundamental cells, which may be regarded as a
2m-port network. The scattering matrix of this network is
indicated as

S
s =|°2N¥n
¥ [SNzl

where each submatrix is mXm. All we need to find S, is
to write down (19) for n=0 and n=N and to eliminate the
vectors W;, Wy between the two sets of equations ob-
tained in this way. The results are

Sy 11 =(M,+M,Ry)(M,+M,R),)”"
Sy =(MAYR), + M,ATY)Y (M, + M,R,) ™!
Sy 22 =(M;+M,R} ) (M, + M,R})™!

Sy } @0)

SN 22

2y
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meander equalizer. (a) Dispersion diagram of the propagating mode.
(b) Attenuation constant of the cutoff mode.

where
Ry =~ AT"M; M AY
Ry, =—AYM;['MAY. (22)
Finally, by reciprocity ‘
Sy 12=(Sy 21)T (23)

with T denoting transposition. Thus starting from the
knowledge of the wave transmission matrix the problem
may be completely solved by elementary algebraic calcu-
lations.

An interesting point concerns the number m of inde-
pendent Bloch waves supported by the structure. By in-
spection of Fig. 6 it is evident that m (which is half the
number of ports of the fundamental cell) usually exceeds
the number of propagating modes which can account for
the electrical behavior of the device. For instance, a
meander line with homogeneous dielectric is an all-pass
network, whose performance resembles that of a conven-
tional transmission line, except for the shape of the disper-
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sion curve. This suggests single-mode operation, while a
4-port fundamental cell is found from Fig. 6(a). As a
further example, a system of two coupled comblines in
triplate -configuration has an 8-port cell (Fig. 6(b)), but
can be used to build codirectional couplers, which are
typically two-mode devices. This is confirmed by experi-
ments [1] showing the existence of only two propagating
modes in such structures.

The above discrepancy is only apparent, since in most
practical cases some of the Bloch waves obtained from
(16) have a propagation constant with a large real part.
These waves are strongly -attenuated, so that they play a
negligible role in the exchange of active power among the
network ports. Thus the number of significant modes is
considerably reduced. An example is given by the meander
stripline defined by (25) below, for which two Bloch
waves are found from (16). One of these has a purely
imaginary propagation constant y=jy, and its dispersion
plot is given in Fig. 8(a) (solid curve); the other one
undergoes an attenuation larger than 11 dB per meander
at all frequencies (Fig. 8(b)), so that its effects are negligi-
ble for all practical purposes.

IV. NUMERICAL RESULTS

In this section we present and discuss a number of
results concerning practical microstrip-array devices, that
were obtained by the method previously outlined. A first
point concerns the accuracy of the circuit equivalence
described in Section IL It is easily found that the argu-
ment developed in that section leads to an analysis of the
microstrip network which is only approximate. A rigorous
analysis—still based on the quasi-TEM characterization
of the array—would require the latter to be handled as a
single circuit component consisting of a section of inho-
mogeneous y-wire line, » being the total number of strips.
This would imply the existence of » different phase veloci-
ties in the x-direction, while the present analysis only
makes use of two. On the other hand, the memory storage
and CPU time required by such an approach are quickly
increasing functions of », while the use of the methods of
Section III, and of (21) in particular, makes both storage
and execution time independent of v. Thus a design based
on the rigorous approach can be extremely expensive in
the case of a large device (such as, say, »=20 or more).

As an example, we consider a microstrip meander-line
equalizer with 19 meanders (»=20), and assume that such
a device has to be designed by computer optimization
over a set of 7 frequency points. For this case the CPU
time needed for each evaluation of the objective function
via the direct method is found to be over 130 times as
large as that required by the Bloch-wave approach. At
current rates' a factor of over 130 usually means stepping
from a moderately priced design to one that is not cost-
effective. Closer examination shows that the Bloch-wave.

IThe cost of each function evaluation on-a CDC Cyber 76 computer
system was about $0.15 at the time of this writing (at the computing
center CINECA, Casalecchio di Reno, Italy).
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analysis actually makes use of the correct capacitance
matrix of the array in the commonly encountered case of
negligible capacitive couplings between nonadjacent strips.
Thus the error is essentially confined to the evaluation of
the inductive couplings.

Since a general error analysis would be difficult, the
validity of the Bloch-wave approach was simply tested for
a number of periodic devices with a limited number of
cells. The exact quasi-TEM analysis was carried out by a
general-purpose program for MIC design accepting arrays
of up to 6 coupled nﬁcrostriFs as standard components
[8]. In all cases the results were quite satisfactory. As a
check, we present the datalobtained for a microstrip
5-meander equalizer (i.e., 6 coupled strips) with the follow-
ing parameters (see Fig. 1):

substrate dielectric constant e, =2.5

substrate thicknlzss =1.575 mm
strip width #"=4.36 mm

strip spacing 5 =0,194 mm
(24

Fig. 9(a) and (b) display a comparison between the
exact quasi-TEM and the Bloch-wave analysis over a
frequency range encompassing the first passband and the
first stopband of the network. Note that the agreement is
truly excellent for the phase delay (and thus for the group
delay, too), which represents the key feature of the device
operation. The good performance of the Bloch-wave ap-
proach is essentially due to the fact that the different
phase velocities of the even and odd modes of the array
are well averaged by the two velocities used in the peri-
odic-structure analysis.

For a few simple structures with homogeneous dielec-
tric, the results obtained from the Bloch-wave analysis
may be directly compared with the classic explicit for-
mulae given by Bolljahn and Matthaei [3]. For instance,
let us consider a triplate meander line with the following
geometry:

meander lengih /=27 mm.

dielectric constant €, =2.5
ground plane spacing =3.15 mm
strip width W=2.06 mm
strip spacing S=0.2 mm
(25)

According to [3], if further-than-nearest-neighbor capaci-
tive couplings are neglected, the dispersion equation for
this structure is

cos(w V g€k, l)=

meander length /=23.7 mm.

(1-2K,;)cosy
1—-K,(14+cos2y)

(26)

where ¢ is the phase delay per meander and K, is a
coupling factor which is related to the capacitance model
of the stripline array (Fig. 3(b)) by

._._C;. + _£_+1
2C, 2C,
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Fig. 10. Topology of a coupled-combline structure,

In this case the capacitance model is easily found by

conformal mappings [6], yielding
K,,=0.2707. (28)

A plot of ¢ versus frequency derived from (26) by means
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of (28) is given in Fig. 8(a) and is seen to match very
closely the dispersion curve of the only propagating Bloch
wave supported by the structure under consideration (see
Section III).

Further confidence in the validity of the analysis ap-
proach described in this paper was gained by comparison
of the computed and measured performance of periodic
stripline and microstrip devices involving a large number
of strips. A particularly significant example is given by the
system of two coupled comblines illustrated in Fig. 10.
This structure can be used for building planar codirec-
tional couplers with tight coupling, both in stripline and
microstrip configurations [1]. For instance, a stripline de-
vice made of an array of 25 coupled strips with the

following geometrical parameters (see Fig. 10):
substrate dielectric constant e, =2.32
ground plane spacing=3.16 mm

W=S=0.6 mm
W, =0.92 mm
/,=1.5mm
/=0.5 mm
l,=0.3 mm
W, =125 mm 29)

will behave as a 3-dB coupler with about 30-percent
bandwidth at 11 GHz, as reported by Gunton [1]. Fig.
11(a)-(c) show that the actual performance of the com-
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bline coupler can be accurately predicted by the Bloch-
wave analysis, in spite of its very complicated topology.
To find the curves in Fig. 11 parasitic effects such as stray
coupling capacitances at the strip open ends were
accounted for by static methods. Minor discrepancies can
probably be ascribed to the imperfect behavior of the
terminations used to carry out the measurements [11]. The
excellent accuracy of the Bloch-wave results shown in Fig.
11 is especially interesting in view of the fact that no
alternative approach based on sound physical arguments
is available to date for analyzing such devices.
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Analysis of Small Aperture Coupling Between
Rectangular Waveguide and Microstrip Line

J.S. RAQ, K. K. JOSHI, anD B. N. DAS

Abstract—This paper presents a gencralized analysis on aperture
coupling between a microstripline and a rectangular waveguide. The ortho-
normalized modal functions for the microstrip line required for the de-
termination of the equivalent dipole moment are found from its equivalent
parallel plate configuration. Expressions for coupling are obtained for
transmission lines with their axes parallel, the lines forming a T-junction
and also for cross-guide couplers. Theoretical results show good agreement
with the experimental data for all cases under investigation.

I. INTRODUCTION

N ORDER to integrate waveguide circuitry with strip

and microstrip circuitry, it is essential to realize cou-
pling between these dissimilar lines. Some studies on the
aperture coupling between a waveguide and a strip or a
microstrip line with their axes parallel have been reported
in the literature [1]-[4]. The coupling coefficient has been
defined in the published literature as the ratio of the
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voltage in the coupled line to that in the primary line. The
expressions obtained do not, however, exhibit reciprocal
properties of the device.

In the present work the coupling between dissimilar
guides is expressed as the ratio of the power flowing down
the coupled guide to that in the primary guide. If the
generator and coupled ports are designated as 1 and 2,
respectively, the power coupling coefficients are the same
for the directions 1-»2 and 2->1. The expression for the
power flow in a line is obtained from the product of the
square of the model voltage [8] and the wave admittance
of the propagating mode. For a TEM mode line the ratio
of the modal voltage to modal current is equal to the wave
admittance [7].

Analysis of aperture coupling between the rectangular
waveguide and the microstrip line is restricted to small
aperture, as the latter is replaced by its dipole moments
[5],[6]. Amplitude of the modal voltage of the wave propa-
gating in the coupled guide is determined from a knowl-
edge of the equivalent dipole moment of the aperture and
the orthonormalized field functions [8] in the coupled
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