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Abstract-The paper dfscussea a general approach to the anslysfs of

perfodic Structures essentially consisting of an array of coupled Strfpffnea

or ndcroatrips. It is shown that any such structure can be represented as a

cascade of identical mnftiport networfm of known topology, thus sUowing a

straightforward analysis in terms of B1och waves. The method k eqI@Y

appitcable to homogeneous and nonhomogeneous dielectric (i.e., MIQ

devices

I. INTRODUCTION

A GENERAL representation of the class of microstrip

(or ‘stripline) periodic slow-wave structures to be

considered in this paper is schematically given in Fig. 1.

The basic device consists of a uniform array of micro-

strips of finite length 1 that are suitably terminated at both

ends of the coupled region. This is indicated in Fig. 1 by

introducing the boundary networks Q,, Qz, which are

assumed to be periodic with the same period d as the

microstrip array, or a multiple thereof. The technical

interest of this kind of device is well established, since a

number of electrical functions can be realized by suitably

specifying the topology of the boundary networks. This

includes tight coupling (e.g., the combline directional cou-

pler [1 ]– [2]), phase equalization (e.g., the meander line

[3]-[5]), and filtering (e.g., the hairpin line [3]).

However, a unified treatment of these components from

the standpoint of the classic theory of periodic structures

has not been available so far. This is probably so because,

while on one hand the network of Fig. 1 is clearly peri-

odic, on the other the circuit topology of its fundamental

cell is not immediately evident. In this paper we present

and discuss a general method allowing periodic MIC

devices to be analyzed and designed by a straightforward

circuit approach. The basic mathematical tool for doing

so is represented by Bloch waves.

II. DECOMPOSITION OF A MICROSTRIP-ARRAY

DEVICE INTO A CASCADE OF IDENTICAL CELLS

In this section we illustrate the transformation of the

basic topology of Fig. 1 into a cascade of identical multi-

port networks (fundamental cells), which is a form suitable

for Bloch-wave analysis. As shown in Fig. 1, a unit cell is

defined as a section of the microstrip array bounded by

the lengthwise centerlines of two adjacent strips. In the
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Fig. L General representation of a rnicrostrip-array periodic structure.
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Fig, 2. Generation of a microstrip array by cascade connection of
two-wire line sections.

case that Q1 and Q2 are periodic with spatial period pd(p
integer), the fundamental cell of the structure will consist

of p cascaded unit cells of the array plus a section (corre-

sponding to a period) of each boundary network. How-

ever, this basic configuration does not lend itself to a

circuit analysis, since two consecutive cells are connected

to each other along the entire centerline of a strip. Thus

we must replace this distributed co’upling by an equivalent

set of discrete connections. This is made possible by the

assumption of pure TEM (or quasi-TEM) propagation in

the x-direction, as discussed below.

As a preliminary step, we consider an infinite array of

identical sections of symmetric two-wire lines uncoupled

with each other (see Fig. 2). For the ith line the two

conductors are indicated as wire 1 i and 2 i, and the
amplitudes of the even- and odd-mode voltages traveling

in the positive (negative) x-direction are denoted by VJ,

Vo~ (V~; , Vo; ). Thus the voltages on wires 2 i – 1 and 1 i

0018-9480/81 /0200-0143$00.75 01981 IEEE
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may be expressed as

V2i_1(X)= V~~_lexp(–yEx)– Vol-lexP(–yO~)

+ VE;_ ~exp(y~x) – V&l exp(yox) (1)

VI i(x)= VJ exp(–y~x)+ Vo~ exp(–yox)

+ VE; exp (yEx) + J& exp(yox) (2)

where YE, y. are the even- and odd-mode propagation

constants. Now we establish short-circuit connections be-

tween the two wires considered at four different positions

defined by

1
x~=K—,

3
K=O, 1,2,3 (3)

as indicated in Fig. 2. This is mathematically equivalent to

making Vz ~- ~(xK) = VI i(xK)> or, from (1) and (2)

K=0,1,2,3 (4)

where

PE+= VE; – vE;_ ,

P; = V-E;– vE;_ ~

Po+ = VJ + J&:. ~

P; = ?’& -t- V&. ~ (5)

and

6E= exp
()

; yJ

()i30=exp ~yol . (6)

Equation (4) is a system of linear homogeneous equations

in the unknowns (5), whose determinant is given by

YE[ . Yol 2 (YE +YOY
A=64sinh y.slnh~. sifi ~

. Sitiz YE —
( 6YJ1. (7)

Note that A is generally different from zero for yE #y.

(i.e., in the microstrip case). Thus the only solution of (4)

P- = P: = P; = O. In turn, from (l), (2), and (5)is P~q = ~
we obtain

‘*~J~(X)=~*i(x) (8)

for any x.

In conclusion, making the connections indicated in Fig.
2 is equivalent to merging the wires 2 i – 1 and 1 i into a

unique metal conductor. In this way, a uniform microstrip

array such as shown in Fig. 1 can be generated from the

set of isolated two-wire lines of Fig. 2. Fig. 3 illustrates the

same concept in terms of capacitance models.

Conversely, given the device of Fig. 1, the microstrip

array in it can be decomposed (as shown in Figs. 2 and 3)

into a cascade of identical 8-port networks such as shown

in Fig. 2 (network N~ in this figure), so that for the

original periodic structure we find the equivalent circuit of

Fig. 4. The topology of the fundamental cell is illustrated
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Fig. 5. Topology of the fundamental cell of a periodic device.

in some more detail in Fig. 5 for the case that Q1 and Q2

are periodic with the same period as the microstrip array,

Here Q; and Q: are sections of Q, and Q2 bounded by

the terminal planes, while each block &t represents a

symmetric two-wire line of length 1/3 (see Fig. 2). Such

lines are defined by the capacitance model of Fig. 3(a),

assuming that the capacitance model of the array is the

one shown in Fig. 3(b).

In practical applications, one is given the geometrical

parameters of the array (see Fig. 1), i.e., strip width (W),

spacing (S), and length (1), as well as the topology of the

boundarv networks. and has to aenerate a circuit descrip-. “– -.
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tion (e.g., the scattering matrix) of the fundamental cell.

According to the previous discussion, this can easily be

accomplished by carrying out the following steps.

1) Starting from the geometrical data, the capacitance

model of the array (Fig. 3(b)) is found by means of

well-known static methods (e.g., the variational approach

of [6]). The self and coupling capacitances are indicated

by 2C and CA, respectively, as in Fig. 3(b). The corre-

sponding air capacitances (i.e., with the substrate dielec-

tric constant set to one) are denoted by 2C’ and Cj.

2) The even- and odd-mode characteristic impedances

and phase velocities of the two-wire line M (Fig. 5) are

computed from the capacitance model of Fig. 3(a) by the

following formulas:

ZE =
1

vow

Z.=
1

VO (C+2C’)(C’+2C4)

f

c,

VPE=qj —

c

rC’+2C:
Vpo=Vo

C+2CA
(9)

where VOis the velocity of light in vacuo.
3) Making use of (9), the impedance (or admittance)

matrix of the 4-port M is determined, e.g., by the explicit

formulas reported in [7]. Then the networks Q; and Qj are

analyzed (usually Q;, Q; have very simple topologies and

can be quantitatively described by conventional methods),

and the various building blocks are combined [8] to find a

circuit description— such as the scattering or transmission

matrix— of the fundamental cell.

From the network of Fig. 4 all of the technically inter-

esting particular cases can be simply generated by specify-

ing the topologies of the boundary networks Q*, Qz. For

instance, if Q1 and Q2 are cascades of transmission-line

tees we get the combline coupler [1] (Fig. 6(a)), while for

Q1 and Q2 reducing to transmission-line connections on

alternate sides of the array, the microstrip meander-line is

obtained (Fig. 6(b)). Note that for the above structures Q1

and Qz are periodic with period 2d (i.e., twice that of the

array), so that the fundamental cell of the periodic device
contains two unit cells of the rnicrostrip array. However

the previously discussed guidelines for analyzing the

fundamental cell are obviously still valid. Further circuit

transformations may be sometimes carried out [9] in order

to simplify the topology of the fundamental cell.

,A final point concerns loss-free homogeneous-dielectric

(i.e., ideal stripline) devices. In this case we have YE= Yo,

so that we are left with only two unknowns, namely,

Px+ + Po+ and P; + P;, in the fundamental system (4).

Thus the wires 2 i– 1 and 1 i need to be connected at only

two locations (such as x= O and x=1, see Fig. 2) to ensure

the equality of the voltages at any value of x. As a

consequence, the network N~ in the equivalent circuits of

fundamental cell

I I
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Fig. 6. Equivalent circuit of (a) the combline directional coupler, and
(b) the microstrip meander line.

Figs. 4–6 will only have 4 ports (instead of 8), and the

connections indicated by dashed lines in these figures will

be missing. In particular, the three blocks M appearing in

the fundamental cell (Fig. 5) will merge into a unique

two-wire line of length i. AU of the subsequent calcula-

tions will then be accordingly simplified.

111. GENERAL ANALYSIS OF A MICROSTRIP-ARRAY

PERIODIC STRUCTURE

Any practical microstrip-array periodic device will con-

sist of a cascade of identical fundamental cells terminated

by suitable end sections. The latter may be separately

analyzed and connected to the rest of the network by

standard circuit algebra (e.g., [8]) once a circuit descrip-

tion of the cascade of repetitive cells has been found. The

present section is devoted to the development of a Bloch-

wave formalism for computing the scattering matrix of

such a cascade.

According to [10], an electromagnetic field guided by

the structure will be named a Bloch wave when the field

distribution repeats identically at every terminal plane

except for a propagation factor exp (– y). For general

periodic structures, the Bloch-wave concept allows propa-

gation along the device axis to be treated separately from

the field description. The latter is thereby reduced to the

analysis of a single fundamental cell, from which the

dispersion equation for the Bloch waves supported by the

structure is directly derived [10]. A general field may then

be expressed by a superposition of Bloch waves, assuming

that these represent a complete set of modes. This is

conceptually similar to the usual treatment of uniform

waveguides, where the mode concept allows the field

analysis to be restricted to the waveguide cross section.

For the present case, a circuit description of the funda-
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mental cell is available from the general discussion of

Section IL In order to simplify the subsequent calcula-

tions, the incident and reflected wave amplitudes at the

rzth terminal plane, namely A., Bn, are used to describe

the electrical behavior of the structure. These are related

to voltages and currents by the usual relationships

(RO = reference impedance). Thus the equations of the

fundamental cell take the form

(11)

where T is the wave transmission matrix (see Fig. 7).

Equation (11) can be viewed as a difference equation in

the unknowns A., Bn, which for the present purposes

replaces Maxwell’s equations. Thus we can expect to be

able to derive from (11) a dispersion equation for the

Bloch waves supported by the structure. Obviously, since

(11) is only valid under the assumption of quasi-TEM

propagation in the x-direction, only Bloch waves undergo-

ing this limitation will be obtained, in much the same way

as only the quasi-TEM modes of an array of uniform

coupled microstrips can be found starting from the classic

coupled-line equations. These waves, however, can be

expected to be the only significant ones for MIC applica-

tions.

Now let us denote by W. a complete set of Bloch waves

at the n th terminal plane. By definition of completeness,

any electromagnetic field supported by the structure at the

same plane— here described by the set of scalar quantities

An, Bn—can be expressed as a linear combination of the

elements of W., that is

[1An
= n’zwn

Bn
(12)

where ill is a square nonsingular matrix independent of n.

Both the row size of ill and Wn equals the number of ports

of the fundamental cell, which is denoted by 2m (see Fig.

7). From (11) we get

Wn.l =AW. (13)

with

By definition, the elements of ~fl are Bloch waves if A is a

diagonal matrix. In this case (14) shows that the elements

of A are the eigenvalues of T, while M is a matrix whose

columns are linearly independent eigenvectors of T. If the

i th nonzero element of A is expressed as

Ai=exp(yi) i=l,2,...,2m (15)

yi has the physical meaning of normalized propagation

constant of the ith wave. According to the definition of

eigenvalues, (15) satisfy

det{T–exp(y)l}=O (16)

where y stands for any of the yi’s and I is the identity

matrix of order 2m. Equation (16) is the dispersion equa-

tion for the Bloch waves being considered.

In the commonly encountered case of a reciprocal de-

vice, we have

[1Al O
A=

O A;l
(17)

so that only m independent Bloch waves (traveling in the

positive and negative z-direction) are found. Thus if the

eigenvector matrix is divided into square submatrices in

the form

M=
[1

Ml Mz

M3 M4
(18)

the general solution to (11) has the expression

An =M,A;”W1 +M2A;WR

Bn =M3A;”W1 +M4A;WR (19)

where WI, WR are vectors of incident and reflected B1och

waves at the input (n= O) plane.

Next we consider the cascade connection of any num-

ber li of fundamental cells, which may be regarded as a

2m-port network. The scattering matrix of this network is

indicated as

(20)

where each submatrix is m x m. All we need to find SN is

to write down (19) for n= O and n= N and to eliminate the
vectors ~1, WR between the two sets of equations ob-

tained in this way. The results are

NII=(MI+MZ~\)(M3 +M4R~)-’s

N,, ‘( I%A@h+M,A;N)(M3 +M4R~)-’s

N22=(M3 +M&)(M1 +M,R;)-ls (21)
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Fig. 8. Behavior of the two Bloch waves supported by a stripline
meander equafizer. (a) Dispersion diagram of the propagating mode.
(b) Attenuation constant of the cutoff mode.

Finally, by reciprocity

s~,2=(&2,)T (23)

with T denoting transposition. Thus starting from the

knowledge of the wave transmission matrix the problem

may be completely solved by elementary algebraic calcu-

lations.

An interesting point concerns the number m of inde-

pendent Bloch waves supported by the structure. By in-

spection of Fig. 6 it is evident that m (which is half the

number of ports of the fundamental cell) usually exceeds

the number of propagating modes which can account for

the electrical behavior of the device. For instance, a

meander line with homogeneous dielectric is an all-pass

network, whose performance resembles that of a conven-

tional transmission line, except for the shape of the disper-

sion curve. This suggests single-mode operation, while a

4-port fundamental cell is found from Fig. 6(a). As a

further example, a system of two coupled comblines in

triplate -configuration has an 8-port cell (Fig. 6(b)), but

can be used to build codirectional couplers, which are

typically two-mode devices. This is confirmed by experi-

ments [1] showing the existence of only two propagating

modes in such structures.

The above discrepancy is only apparent, since in most

practical cases some of the Bloch waves obtained from

(16) have a propagation constant with a large real part.

These waves are strongly attenuated, so that they play a

negligible role in the exchange of active power among the

network ports. Thus the number of significant modes is

considerably reduced. An example is given by the meander
stripline defined by (25) below, for which two Bloch

waves are found from (16). One of these has a purely

imaginary propagation constant y =j~, and its dispersion

plot is given in Fig. 8(a) (solid curve); the other one

undergoes an attenuation larger than 11 dB per meander

at all frequencies (Fig. 8(b)), so that its effects are negligi-

ble for all practical purposes.

IV. NUMERICAL RESULTS

In this section we present and discuss a number of

results concerning practical microstrip-array devices, that

were obtained by the method previously outlined. A first

point concerns the accuracy of the circuit equivalence

described in Section II. It is easily found that the argu-

ment developed in that section leads to an analysis of the

microstrip network which is only approximate. A rigorous

analysis— still based on the quasi-TEM characterization

of the array— would require the latter to be handled as a

single circuit component consisting of a section of ipho-

mogeneous v-wire line, v being the total number of strips.

~ would imply the existence of v different phase veloci-

ties in the x-direction, while the present analysis only

makes use of two. On the other hand, the memory storage

and CPU time required by such an approach are quickly

increasing functions of v, while the use of the methods of

Section III, and of (21) in particular, makes both storage

and execution time independent of v. Thus a design based

on the rigorous approach can be extremely expensive in

the case of a large device (such as, say, v= 20 or more).

As an example, we consider a microstrip meander-line

equalizer with 19 meanders (v= 20), and assume that such

a device has to be designed by computer optimization

over a set of 7 frequency points. For this case the CPU

time needed for each evaluation of the objective function

via the direct method is found to be over 130 times as

large as that required by the Bloch-wave approach. At

current ratesl a factor of over 130 usually means stepping

from a moderately priced design to one that is not cost-

effective. Closer examination shows that the Bloch-wave,

1The cost of each function evaluation on a CDC Cyber 76 computer
system was about $0.15 at the time of this writing (at the computing
center CINEC~ Casalecchio di Reno, Italy).
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analysis actually makes use of the correct capacitance

matrix of the array in the commonly encountered case of

negligible capacitive couplings between nonadjacent strips.

Thus the error is essentially confined to the evaluation of

the inductive couplings.

Since a general error analysis would be difficult, the

validity of the Bloch-wave approach was simply tested for

a number of periodic devices with a limited number of

cells. The exact quasi-TEM analysis was carried out by a

general-purpose program for MIC design accepting arrays

of up to 6 coupled microst
T

s as standard components

[8]. In all cases the results w~ere quite satisfactory. As a

check, we present the data obtained for a microstrip

5-meander equalizer (i.e., 6 coupled strips) with the follow-

ing parameters (see Fig. 1):

substrate dielectric constant c,= 2.5

substrate thick@s = 1.575 mm

strip width W= 4.36 mm

strip spacing /i= 0.194 mm

meander lengl,h 1=27 mm. (24)

Fig. 9(a) and (b) display a comparison between the

exact quasi-TEM and the Bloch-wave analysis over a

frequency range encompassing the first passband and the

first stopband of the network. Note that the agreement is

truly excellent for the phase delay (and thus for the group

delay, too), which represents the key feature of the device

operation. The good performance of the Bloch-wave ap-

proach is essentially due to the fact that the different

phase velocities of the even and odd modes of the array

are well averaged by the two velocities used in the peri-

odic-structure analysis.

For a few simple structures with homogeneous dielec-

tric, the results obtained from the Bloch-wave analysis

may be directly compared with the classic explicit for-

mulae given by Bolljahn and Matthaei [3]. For instance,

let us consider a triplate meander line with the following

geometry:

dielectric constant C.= 2.5

ground plane spacing =3. 15 mm

strip width W= 2.06 mm

strip spacing S= 0.2 mm

meander length l= 23.7 mm. (25)

According to [3], if further-than-nearest-neighbor capaci-

tive couplings are neglected, the dispersion equation for

this structure is

(1–2K,2)COS+
Cos(a=l)=

1 –K,2(1 +COS2+)
(26)

where ~ is the phase delay per meander and Klz is a

coupling factor which is related to the capacitance model

of the stripline array (Fig. 3(b)) by

.?
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Fig. 10. Topology of a coupled-combline structure.

In this case the capacitance model is easily found by

conformal mappings [6], yielding

Klz = 0.2707. (28)

L A plot of $ versus frequency derived from (26) by meansJ
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Fig. 11. Comparison between measured and computed performance of a combline directional coupler. (a) Input VSWR.

(b) Directivity. (c) Coupling.

of (28) is given in Fig. 8(a) and is seen to match very

closely the dispersion curve of the only propagating Bloch

wave supported by the structure under consideration (see

Section III).

Further confidence in the validity of the analysis ap-

proach described in this paper was gained by comparison

of the computed and measured performance of periodic

stripline and microstrip devices involving a large number

of strips. A particularly significant example is given by the

system of two coupled comblines illustrated in Fig. 10.

This structure can be used for building planar codirec-

tional couplers with tight coupling, both in stripline and

microstrip configurations [1]. For instance, a stripline de-

vice made of an array of 25 coupled strips with the

following geometrical parameters (see Fig. 10):

substrate dielectric constant c.= 2.32

ground plane spacing =3. 16 mm

W= S=O.6 mm

WI =0.92 mm

1,=1.5mm

1=0.5 mm

12=0.3 mm

W2=l.25mm (29)

will behave as a 3-dB coupler with about 30-percent

bandwidth at 11 GHz, as reported by Guntori [1]. Fig.

1l(a)– (c) show that the actual performance of the com-
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bline coupler can be accurately predicted by the Bloch-

wave analysis, in spite of its very complicated topology.

To find the curves in Fig. 11 parasitic effects such as stray

coupling capacitances at the strip open ends were

accounted for by static methods. Minor discrepancies can

probably be ascribed to the imperfect behavior of the

terminations used to carry out the measurements [11]. The

excellent accuracy of the Bloch-wave results shown in Fig.

11 is especially interesting in view of the fact that no

alternative approach based on sound physical arguments

is available to date for analyzing such devices.
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Analysis of Small Aperture Coupling Between
Rectangular Waveguide and Microstrip Line

J. S. RAO, K. K. JOSHI, AND B. N. DAS

Abstract-This paper presents a generalized aoafysis on aperture

cmrplfng between a microstripline and a redangufar waveguide. The ortho-

normalfmd motfaf functions for the mfcrostrip fine required for the de-

tersnfnation of the equivalent dipole moment are found from its equivalent

parallel plate coofiition. Expressions for cmspffng are obtained for

trananskdoss lines with theii axes paraffe~ the lfoeR forming a T-junction

and afso for cross-guide couplers. Theoretical reRofts show good agreement

with the experimental data for afl cases under investigation.

TN ORDER to

I. INTRODUCTION

integrate waveguide circuitry with strip

land microstrip circ~itry, it is-essential to realize COU-

pling between these dissimilar lines. Some studies on the

aperture coupling between a waveguide and a strip or a

microstrip line with their axes parallel have been reported

in the literature [ 1]– [4]. The coupling coefficient has been

defined in the published literature as the ratio of the

Manuscript received June 9, 1980; revised September 30, 1980.
The authors are with the Department of Electronics and Electrical

Communication Engineering, Indian Institute of Technology, Kharagpur-
721302, India.

voltage in the coupled line to that in the primary line. The

expressions obtained do not, however, exhibit reciprocal

properties of the device.

In the present work the coupling between dissimilar

guides is expressed as the ratio of the power flowing down

the coupled guide to that in the primary guide. If the

generator and coupled ports are designated as 1 and 2,

respectively, the power coupling coefficients are the same

for the directions 1+2 and 2~1. The expression for the

power flow in a line is obtained from the product of the

square of the model voltage [8] and the wave admittance

of the propagating mode. For a TEM mode line the ratio

of the modal voltage to modal current is equal to the wave

admittance [7].

Analysis of aperture coupling between the rectangular

waveguide and the microstrip line is restricted to small

aperture, as the latter is replaced by its dipole moments

[5], [6]. Amplitude of the modal voltage of the wave propa-

gating in the coupled guide is determined from a knowl-

edge of the equivalent dipole moment of the aperture and

the orthonormalized field functions [8] in the coupled
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